摘 要: 蚊蟲是一種重要的醫學昆蟲,在生物媒介傳染病的過程中起著非常重要的角色,其腸道定植著大量的細菌群落,菌群在與蚊蟲的互作共生過程中,在多方面對蚊蟲的生命活動起著重大的影響,本文從蚊蟲腸道菌群的種群結構、影響因素以及菌群對蚊蟲媒介效能的調控等方面進行綜述。
關鍵詞: 蚊; 腸道菌群; 多樣性; 媒介效能;
Abstract: Mosquitoes are an important medical insect and play a very important role in the process of biologically vector infectious diseases. A large number of bacterial communities are colonized in their intestines. In the process of interaction and symbiosis with mosquitoes, the bacterial community is in many ways. The life activities of mosquitoes have a significant impact. This article reviews the population structure of the mosquito intestinal flora, influencing factors, and the regulation of mosquito vector efficacy by the flora.
Keyword: Mosquitoes; Intestinal flora; Diversity; Media effectiveness;
蚊蟲與人類生活密切相關,是非常重要的醫學媒介昆蟲,通過叮咬人和脊椎動物,可傳播登革病毒(Dengue Virus)、寨卡病毒(Zika Virus)、瘧原蟲(Plasmodium)等多種病原體[1,2,3,4,5],給全世界的公共衛生防疫帶來巨大的挑戰。腸道作為蚊蟲對病原微生物的首道重要防線,定植著大量微生物群,包括浮游生物(水藻類等)、細菌與真菌等,而目前在對蚊蟲腸道微生物的研究中,受到廣泛關注的是細菌[6]。自2007年人類微生物組計劃(HMP, 2007年NIH)啟動以來,越來越多的研究表明,菌群在與宿主的互作共生過程中,在多方面與宿主的生命活動存在著密切的聯系[7,8]。本文通過對蚊蟲腸道菌群組成結構的多樣性、影響因素,腸道菌群對蚊蟲的生命活動及媒介效能的影響研究現狀進行綜述。
1、 蚊蟲腸道菌群的多樣性
蚊蟲在幼蟲羽化為成蟲前,主要孽生在積水的環境中,不同的蚊種,對孽生水質的要求各有差異,成蟲其孽生環境因可飛行相比較幼蟲而言變得相對復雜多變[9]。從食物獲取的來源分析,幼蟲以單細胞生物、有機碎屑和小型無脊椎動物為食,雄蚊則通常以花粉蜜腺為食,而成年雌蚊則以吸食脊椎動物血液作為食物的主要來源[10,11],這也為產卵提供了必要的營養,而此相對特殊的食物鏈也為病原生物在宿主之間進行傳播提供了必要的途徑[12]。絕大部分蚊蟲定植在腸道的菌群主要是通過飲食從環境中獲得,僅少部分是直接通過垂直傳播途徑獲得[13,14],此觀點獲得多項研究數據的支持,第一,實驗研究發現蚊子幼蟲孵化時腸道內沒有細胞外菌群;其次,對蚊蟲腸道菌群的研究發現,在幼蟲腸道鑒定出的大多數菌群與其水生棲息地中存在的群落高度重疊;第三,蚊蟲擁有高度可變的腸道群落[6,15,16,17]。隨著測序技術的快速發展,對蚊蟲腸道菌群結構的研究已經由體外細菌培養轉變為體外細菌培養結合宏基因組學測序技術的研究[18],該技術極大的促進了對不能體外培養的菌群調查研究。目前除罕見難以鑒別的序列外,蚊蟲已鑒定的腸道細菌群落多樣性與脊椎動物相比,蚊蟲腸道中的細菌群落多樣性相對較低(約200種)[12],但單從蚊蟲的腸道細菌群落多樣性與其它從環境中獲得腸道菌群的代謝性昆蟲相比,其腸道菌群構成還是很可觀[13]。不同的蚊種,對生境的喜好各有不同,伊蚊幼蟲孽生以民房周邊的容器積水(缸、罐、盆、竹筒、樹洞、輪胎等)為主,阿蚊幼蟲則孽生在室內、畜舍、廁所積水內生棲居多,按蚊幼蟲孽生以遮陰,水質清涼的稻田、沼澤、洼地積水等環境為主,而庫蚊則孽生在房屋附近污水或水缸中,成蟲因其能飛行,以及需要尋找合適的產卵環境,其孽生環境范圍較廣[10,11,19]。研究表明,在幼蟲期和成蟲期其腸道中,大多數已鑒定的菌群以革蘭氏陰性需氧菌或兼性厭氧菌為主,主要隸屬4個優勢門,分別為變形菌門(Proteobacteria)、厚壁菌門(Firmicutes)、擬桿菌門(Bacteroidetes)和放線菌門(Actinobacteria)[6,15,16,17,20,21,22,23],定植的常見菌株包括擬桿菌門的伊麗莎白菌(Elizabeth)、金黃桿菌(Chryseobacterium),變形菌門的假單胞菌(Pseudomonadaceae)、沙雷氏菌(Serratia)、沃爾巴克氏體菌(Wolbachia)、腸桿菌(Enterobacter)和不動桿菌(Acinetobacter),在伊蚊與按蚊的腸道中還普遍發現Asaia菌與泛菌(Pantoea)的存在[16,24,25]。研究發現,同種蚊蟲的幼蟲與成蟲因生境不同以及生長發育的影響,多數情況下,幼蟲中的細菌物種多樣性始終高于成蟲[6,15,17,22],而實驗室飼養的蚊種與野外采集的同一蚊種相比,其腸道菌群多樣性更低[15,16,20],并且野外采集的蚊種,雌蚊腸道的菌群多樣性要高于雄性[24]。在對多個采樣點的研究發現,同一種或不同物種的個體在同一地點和相同采集日期之間的腸道菌群組成比來自不同地點和相同采集日期的個體腸道菌群更為相似[6,16,22],但目前并沒有證據證明在相同的采樣區域,同種或不同種蚊種的幼蟲與成蟲的腸道就存在某特定的“核心”菌群[26]。大多數的研究結果不約而同的指向不同蚊種之間和蚊蟲內部的細菌多樣性因采集地點的不同而有較大的差異,而同一地點各蚊蟲腸道可有相似的菌群結構[6,16,17,21,22,27,28,29],并且蚊蟲從環境中獲取的腸道菌群與其他昆蟲和脊椎動物的相關研究結論相似[30],這一系列研究說明蚊蟲所處的生境對腸道菌群結構的形成起著主導性作用。在特定地區,影響腸道菌群組成的次要因素還包括蚊蟲進食食物的PH值、碳水化合物的含量、代謝途徑等均能對腸道菌群的結構產生影響[20,31,32],腸道菌群還隨著年齡的變化而發生著變化,這也許是腸道菌群跟蚊蟲競爭糖源相關[33,34]。而間日瘧原蟲可以通過調節按蚊腸道的鐵代謝來引起腸道菌群的早期抑制[34],從而引起腸道菌群的改變。
2、 腸道菌群對蚊蟲生長發育的影響
腸道菌群在蚊蟲的生長發育過程中扮演著十分重要的角色[7,8],通過不同方式給蚊蟲提供必要的營養物質[35,36]。早期有研究發現,當自然水生環境中的菌群數量減少時,蚊子在幼蟲時期表現出更高的死亡率或延遲到蛹期的生長[22],在對埃及伊蚊(Aedes aegypti)自蟲卵培育開始,通過無害化構建無菌幼蟲,在與正常養殖的對照組相比較,也發現實驗組不生長,且一齡幼蟲在幾天后死亡,在通過人為的添加正常的菌群或者酵母(Saccharomyces)后,可以恢復其正常的生長[15,37]。有趣的是,研究人員發現只有喂食活菌才能支持埃及伊蚊的生長發育,這在其它的幾種蚊種的實驗中也得到證明[15,17,22],另外還發現腸道細菌對幼蟲的蛻皮也是至關重要[38]。而在最近的一項研究則表明,在完全沒有菌群的培養生境下,給予正常的營養物質,依舊能將埃及伊蚊從卵培養到成蚊并繼續培養到下一代,無菌蚊蟲發展正常,僅僅在發育的時間存在延遲[39],在給予按蚊的食物中提高細菌的豐度能加速幼蟲的生長發育[31],這些證據表明腸道菌群的次級代謝產物有可能是調節蚊蟲生長發育非常重要的影響因素。研究還發現蘇云金桿菌(Bacillus thuringiensis)以色列亞種制劑則有抑制搖蚊生長發育的作用[40],而埃及伊蚊的腸道細菌能影響其對血粉的消化,其機制考慮是沙雷氏菌與腸桿菌通過產生溶血酶,以此增進蚊蟲吸血后營養的吸收[41]。雖然到目前為止,絕大部分腸道菌群影響蚊蟲生長發育的具體機制沒有被深入研究鑒定,但通過這一些列的表觀現象還是能說明,腸道菌群及次級產物在蚊蟲的生命各個階段起著不可或缺的作用。
3 、腸道菌群對蚊蟲免疫調控的影響
媒介效能是蚊蟲感染病原體后,將病原復制增殖并傳播給其它宿主的能力[42]。腸道菌群與蚊蟲宿主長期保持著寄生或共生的關系,菌群在自身的生命活動過程中,通過菌群自身及其次級產物從多途徑影響著蚊蟲的媒介效能,在蚊蟲免疫系統的發展和功能中扮演著重要的角色[43,44]。研究表明腸道菌群通過感染蚊蟲能激活其中腸免疫基因的表達[33],而按蚊被感染不同的沙雷氏菌種后,其對瘧原蟲感染的效能也有所變化[45],而沙雷氏菌還可以促進登革病毒、寨卡病毒、基孔肯雅病毒(Chikungunya Virus)對蚊蟲的感染[46,47,48],目前研究考慮其機制為沙雷氏菌通過其分泌的多肽結合埃及伊蚊中腸表面的抗增值蛋白,以此促進蚊蟲對登革病毒易感,而芳香沙雷氏菌通過分泌P40蛋白,再與蚊蟲中腸細胞的線粒體上的孔蛋白相結合,從而抑制蚊蟲的免疫力,促進基孔肯雅病毒的感染[46,47]。
被變形桿菌(Proteus)感染后的埃及伊蚊,其中腸上皮細胞的多種抗菌肽基因可被激活表達,以此能增強蚊蟲對病毒的免疫力[49]。更有意思的發現是色素細菌(Chromobacterium)不僅能抑制腸道內多種細菌的生長[50],還有著廣泛的抗病原體活性,它不僅可顯著的減少岡比亞按蚊(Anopheles gambiae)對瘧原蟲的感染,還能減少登革病毒對埃及伊蚊的感染,但具體的作用機制目前并沒有太多的深入研究[51]。岡比亞按蚊在進食含有抗生素的血液后,其對瘧原蟲免疫力有所降低[36]。Moreira研究團隊首次報告沃爾巴克氏體通過感染埃及伊蚊,能降低登革病毒和基孔肯雅病毒(CHIKV)感染埃及伊蚊的能力[52],而近期報道也表明,沃爾巴克氏體能顯著的抑制寨卡病毒感染埃及伊蚊[53],已報道的沃爾巴克氏體對埃及伊蚊免疫調控的途徑是,沃爾巴克氏體通過感染埃及伊蚊,激活蚊蟲的ROS-Tall通路,以此來增強埃及伊蚊的免疫力,減低埃及伊蚊對病原體及寄生蟲的易感性[54]。該菌在通過感染按蚊后,可以激活按蚊的免疫系統,也能顯著抑制瘧原蟲卵囊的形成,達到減少瘧原蟲的傳播[55]。沃爾巴克氏體為母系遺傳[56],其在昆蟲的生殖過程中所表現出的胞質不親和性(Cytoplasmic incompatibility, CI)是目前沃爾巴克氏體運用到昆蟲種群控制的基礎,基于CI的蚊種節育技術已經在多地進行野外實驗[57],并證明該方法可以有效的控制白紋伊蚊種群數[58]。而另外的團隊通過按蚊腸道感染厚壁菌門的球形芽孢桿菌(Bacillus sphaericus),利用該菌其合成的Mtx與Bin毒力蛋白,可以高效的創傷按蚊,從而達到對按蚊種群的控制[59],達到生物控蚊防傳染病的目的。而在生物滅蚊的另一個被廣泛關注的是利用Xenorhabdus屬與Photorhabdus屬的不同菌種來實現生物滅蚊[60,61],目前已發現24個Xenorhabdus菌種與5個Photorhabdus菌種具備殺蚊蟲的特性,其殺蚊途徑考慮是這些菌種通過感染蚊蟲后,細菌的相關基因編碼低分子量蛋白質、次級毒素復合物和具有殺蟲劑活性的代謝物,使蚊種患病受傷甚至致死,從而達到滅蚊,切斷病原傳播途徑,目前多項研究已經證明了它們對滅蚊具有較強的有效性,且對環境與人類友好[62,63,64,65,66,67,68]。這一系列的研究結果為將來開發出更多用于滅蚊的化合物和生物制劑提供了研究基礎。
4、 展望
蚊蟲對傳染病的傳播依舊是目前全球公共衛生安全所面臨的巨大挑戰之一,而滅蚊仍是應對的最佳選擇。然而傳統的化學防蚊,其對人居環境不友好以及快速的產生耐藥蚊蟲,使找到新的控蚊手段顯得更為迫切需要。近年來,通過對蚊蟲、腸道菌群以及病原三者間互作關系深入研究成果的展現,為生物防蚊以及防媒介傳染病提供了新的思路。伴隨著高通量測序技術、生物信息學技術、宏基因組學等相關技術的進一步發展,極大的推動了蚊蟲與腸道菌群的相關研究,并展現出腸道菌群在蚊蟲免疫調節、生物媒介、種群控制、生長發育等多方面強有力的調節作用,從多方面揭示了腸道菌群對蚊蟲影響的機制。為進一步闡明蚊媒介傳染病的傳播因素以及在生物滅蚊、防控媒介傳染病的應用開拓了新方向。
作者貢獻度說明
劉 彪:第一作者 為文章主要撰寫人;
康 迅:共同第一作者 在文獻的撰寫過程中協助查找參考文獻,提供參考建議,幫助修改文章;
王悅鑫:第二作者 幫助修改文章;
吳興勇:第三作者 幫助修改文章;
符慧敏:第四作者 幫助修改文章;
康 樂:共同通訊作者 作為第一作者聯合培養導師,對作者在文章的撰寫過程中提供富有建設性的指導建議;
夏乾峰:通訊作者 作為第一作者聯合培養導師,對作者在文章的撰寫過程中提供寶貴的指導建議。
參考文獻
[1] Hay SI, Okiro EA, Gething PW, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007[J]. PLoS Med, 2010, 7(6):e1000290.
[2] Annelies WS, Murray, Mikkel Q. Epidemiology of dengue: past, present and future prospects[J]. Clin Epidemiol, 2013, 5:299-309.
[3] Anne, Gulland. Death toll from malaria is double the WHO estimate, study finds[J]. BMJ, 2012, 344:e895.
[4] 張麗, 豐俊, 張少森, 等. 2018年全國瘧疾疫情特征及消除工作進展[J]. 中國寄生蟲學與寄生蟲病雜志, 2019, 37(03):241-247.
[5] Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus[J]. Lancet Infect Dis, 2016, 16(5):522-523.
[6] Geoffrey, Gimonneau, Majoline, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28:715-724.
[7] González A, Vázquez-Baeza Y, Knight R. SnapShot: the human microbiome[J]. Cell, 2014, 158(3):690-690.e1.
[8] Vázquez-Baeza, Yoshiki, Gonzalez A, et al. Bringing the Dynamic Microbiome to Life with Animations[J]. Cell Host Microbe, 2017, 21(1):7-10.
[9] Clements AN. The Biology of Mosquitoes, Volume 1. Development,Nutrition and Reproduction[M]. Oxfordshire: CABI Publishing, 2000.
[10] Merritt RW, Dadd RH, Walker ED. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes[J]. Annu Rev Entomol, 1992, 37:349-376.
[11] Foster WA. Mosquito sugar feeding and reproductive energetics[J]. Annu Rev Entomol, 1995, 40:443-474.
[12] Strand MR. The gut microbiota of mosquitoes: Diversity and function. In Arthropod Vector: Controller of Disease Transmission, Vol 1 [M]. Elsevier, 2017.
[13] Philipp E, Moran NA. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiolo Rev, 2013, 37(5): 699-735.
[14] Strand, Michael R. Composition and functional roles of the gut microbiota in mosquitoes[J]. Curr Opin Insect Sci, 2018, 28:59-65.
[15] Coon KL, Vogel KJ, Brown MR, et al. Mosquitoes rely on their gut microbiota for development[J]. Mol Ecol, 2014, 23(11):2727-2739.
[16] Anne B, Majoline TT, Dipankar B, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection[J]. PLoS Pathog, 2012, 8(5):e1002742
[17] Laura, B, Dickson, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector[J]. Sci Adv, 2017, 3(8): e1700585.
[18] 曹樂, 寧康. 昆蟲腸道的宏基因組學: 微生物大數據的新疆界[J]. 微生物學報, 2018, 58(06):964-984.
[19] 柳支英, 陸寶麟. 醫學昆蟲學[M]. 北京: 科學出版社, 1990, 141-142.
[20] Ying W, Thomas MG, Phanidhar K, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PloS One, 2011, 6(9): e24767.
[21] Kamlesh KY, Ajitabh B, Sibnarayan D, et al. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India[J]. Parasit Vectors, 2015, 8:641.
[22] Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats[J]. Mol Ecol, 2016, 25(22):5806-5826.
[23] Panpim T, James AC, Amy BJ, et al. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases[J]. Ecol Evol, 2017, 8(2):1352-1368.
[24] Karima Z, Fara NR, Vincent R, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75(3):377-389.
[25] Niccolò, Alfano, Valentina, et al. Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-Based Control Strategies[J]. Front Microbiol, 2019, 10:2832.
[26] Guégan, Morgane, Zouache K, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions[J]. Microbiome, 2018, 6(1):49.
[27] Dagne D, Michael WH, Paul R, et al. Developmental succession of the microbiome of Culex mosquitoes[J]. BMC Microbiol, 2015, 15:140.
[28] Villegas LEM, Campolina TB, Barnabe NR, et al. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis[J]. PloS One, 2018, 13(1):e0190352.
[29] Kim CH , Lampman RL, Muturi EJ. Bacterial Communities and Midgut Microbiota Associated with Mosquito Populations from Waste Tires in East-Central Illinois[J]. J Med Entomol, 2015, 52(1):63-75.
[30] Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695):210-215.
[31] Linenberg I, Christophides GK, Gendrin M. Larval diet affects mosquito development and permissiveness to Plasmodium infection[J]. Sci Rep, 2016, 6:38230.
[32] Dutra NR, Guilherme VM, Moretti DM, et al. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan[J]. PLoS Negl Trop Dis, 2016, 10(10):e0005034.
[33] Dong Y, Manfredini F, Dimopoulos G, et al. Implication of the mosquito midgut microbiota in the defense against malaria parasites[J]. PLoS Pathog, 2009, 5(5):e1000423.
[34] Punita S, Jyoti R, Charu C, et al. Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi[J]. Front Immunol, 2020, 11:609.
[35] Ricci I, Damiani C, Capone A, et al. Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives[J]. Curr Opin Microbiol, 2012, 15(3):278-284.
[36] Gendrin M, Rodgers FH, Yerbanga, Rakiswendé S, et al. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria[J]. Nat Commun, 2015, 6:5921.
[37] Leonardo MD, Alessio CD, Perotti MA, et al. Culex pipiens Development Is Greatly Influenced by Native Bacteria and Exogenous Yeast[J]. PloS One, 2016, 11(4):e0153133.
[38] Coon K L, Valzania L, Mckinney DA, et al. Bacteria-mediated hypoxia functions as a signal for mosquito development[J]. Proc Natl Acad Sci U S A, 2017, 114(27):E5362-E5369.
[39] Correa MA, Matusovsky B, Brackney DE, et al. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development[J]. Nat Commun, 2018, 9(1):4464.
[40] 雷萍, 劉麗君, 張金松, 等. 供水系統搖蚊污染的微生物控制實驗研究[J]. 微生物學通報, 2007, (02):296-299.
[41] Analiz DOG, Desiely SG, Ad?o VS, et al. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)[J]. Parasit Vectors, 2011, 4:105.
[42] 張浩, 王春梅, 周元平, 等. 伊蚊傳播登革病毒媒介效能的研究進展[J]. 熱帶醫學雜志, 2012, 12(09):1160-1163+1170.
[43] Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation[J]. Cell, 2014, 157(1):121-141.
[44] Wlodarska M , Kostic A , Xavier R. An integrative view of microbiome-host interactions in inflammatory bowel diseases[J]. Cell Host Microbe, 2015, 17(5):577-591.
[45] Bando H, Okado K, Guelbeogo WM, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity[J]. Sci Rep, 2013, 3:1641.
[46] Apte-Deshpande AD, Paingankar MS, Gokhale MD, et al. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus[J]. Indian J Med Res, 2014, 139(5): 762-768.
[47] Anjali AD, Mandar P, Gokhale MD, et al. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus[J]. PloS One, 2012, 7(7):e40401.
[48] Wu P, Sun P , Nie K, et al. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses[J]. Cell Host Microbe, 2019, 25(1):101-112.e5.
[49] Ramirez JL, Souza-Neto J,Torres CR, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence[J]. PLoS Negl Trop Dis, 2012, 6(3):e1561.
[50] Ramirez JL, Short SM, Bahia AC, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities[J]. PLoS Pathog, 2014, 10(10):e1004398.
[51] Saraiva RG, Jingru F, Seokyoung K, et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein[J]. PLoS Negl Trop Dis, 2018, 12(4):e0006443.
[52] Luciano AM, I?aki I, Jason AJ, A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium[J]. Cell, 2009, 139(7):1268-1278.
[53] Dutra HL, Rocha MN, Dias FB, et al. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes[J]. Cell Host Microbe, 2016, 19(6):771-774.
[54] Pan X, Zhou G, Wu J, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci U S A, 2012, 109(1):E23-31.
[55] Hughes GL, Koga R, Xue P, et al. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae[J]. PLoS Pathog, 2011, 7(5):e1002043.
[56] Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology[J]. Nat Rev Mic, 2008, 6(10):741-751.
[57] Zabalou S, Riegler M, Theodorakopoulou M, et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control[J]. Proc Natl Acad Sci U S A, 2004, 101(42):15042-15045.
[58] Zheng X, Zhang D, Li Y, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes[J]. Nature, 2019, 572(7767):56-61.
[59] Berry C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen[J]. J Invertebr Pathol, 2012, 109(1):1-10.
[60] Veesenmeyer JL,Andersen AW, Lu X, et al. NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes[J]. Mol Microbiol, 2014, 93(5):1026-1042.
[61] Ahantarig A, Chantawat N, Waterfield NR, et al. PirAB toxin from Photorhabdus asymbiotica as a larvicide against dengue vectors[J]. Appl Environ Microbiol, 2009, 75(13):4627-4629.
[62] Joo LRDS, Fernanda US, Eugênio SC, et al. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae)[J]. J Econ Entomol, 2017, 110(2):378-385.
[63] Yooyangket T, Muangpat P, Polseela R, et al. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus[J]. PloS One, 2018, 13(4):e0195681.
[64] Thanwisai A, Tandhavanant S, Saiprom N, et al. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand[J]. PloS One, 2012, 7(9):e43835.
[65] Tailliez P, Pagès S, Ginibre N, et al. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species[J]. Int J Syst Evol Microbiol, 2006, 56(Pt 12):2805-2818.
[66] Glaeser SP, Tobias NJ, Thanwisai A, et al. Photorhabdus luminescens subsp namnaonensis subsp nov, isolated from Heterorhabditis baujardi nematodes[J]. Int J Syst Evol Microbiol, 2017, 67(4): 1046-1051.
[67] Muangpat P, Yooyangket T, Fukruksa C, et al. Screening of the Antimicrobial Activity against Drug Resistant Bacteria of Photorhabdus and Xenorhabdus Associated with Entomopathogenic Nematodes from Mae Wong National Park, Thailand[J]. Front Microbiol, 2017, 8:1142.
[68] Silva WJD , Harry LP, Heermann R , et al. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review[J]. Parasit Vectors, 2020, 13(1):376.