摘 要: 單增李斯特菌是危害嚴重的食源性致病菌之一,作為一種兼性厭氧的革蘭氏陽性短桿菌,廣泛存在于食品、環境及動物宿主體內。根據分子特征和流行情況的不同,可將其分成4個進化家系,不同家系的菌株毒力和致病性各不相同。本文分析歸納了單增李斯特菌不同進化家系的特點,總結概述了致病性和流行特征等,以期為研究與菌株家系有關的食源性疾病提供一定參考。
關鍵詞: 單增李斯特菌; 家系; 致病性; 差異;
Abstract: Listeria monocytogenes is one of the most harmful food-borne pathogens. As a facultative anaerobic gram-positive bacterium, it is widely present in food, environment and animal hosts. According to the different molecular characteristics and epidemic situation, it can be divided into four evolutionary lineages, the strains of different lineages have different virulence and pathogenicity. This article analyzes and generalizes the characteristics of different lineages of Listeria monocytogenes, and summarizes the pathogenicity and epidemic characteristics, etc., in order to provide a certain reference for the research of food-borne diseases related to strain lineages.
Keyword: Listeria monocytogenes; lineages; pathogenicity; difference;
單增李斯特菌(Listeria monocytogenes,LM)是一種胞內兼性厭氧的可對人類健康造成嚴重危害的食源性致病菌[1]。其分布廣泛,食品(乳及乳制品,生、熟肉類,蛋類,即食食品,水果蔬菜等)[2,3],食品加工、儲存設備(設備表面,管道,生產環境和冰箱)[4,5],自然環境(土壤,污水)[6]和動物宿主(哺乳動物,非哺乳動物)細胞中均有分離獲得該菌的報道[7]。單增李斯特菌可在低pH值(3.3-4.2)、低溫、高鹽濃度(0.5%-1.2%)和高壓下存活[8],易感人群為幼童(young)、老年人(old)、孕婦(pregnant)和免疫功能缺陷人群(immune-compromised people),也被簡稱為“YOPI”[8]。感染后,住院率(92%)和死亡率(20%-30%)較高[9]。
根據菌體抗原(O)和鞭毛抗原(H)的血清凝集試驗,可以將單增李斯特菌分成13個血清型(1/2a,1/2b,1/2c,4b,3a,3b,3c,4a,4c,4e,4ab,4d和7)[10,11]。不同血清型菌株的致病性存在差異,從臨床病例和受污染的食品中分離得到的菌株至少95%以上屬于血清型1/2a、1/2b、1/2c、4b[12,13],其中1/2a和1/2b血清型菌株通常為食品分離株[11,14,15]。血清型4b菌株在臨床患者標本中常見[16],李斯特菌病中約有50%的病例是由4b血清型菌株感染所致。血清型1/2和4b菌株致病性的差異,有研究認為可能與菌株細胞的壁磷壁酸(wall teichoic-acid,WTA)組成及其聚合物結構不同有關[17]。依據表型特征和基因分型方法,可以將單增李斯特菌分成4個進化家系,家系Ⅰ和家系Ⅱ菌株的來源種類和數量最多,而家系Ⅲ較少,家系Ⅳ則較為罕見[18]。家系Ⅰ菌株包含6種血清型(1/2b,4b,3b,4e,4d和7),家系Ⅱ菌株包含4種血清型(1/2a,1/2c,3a和3c),家系Ⅲ和Ⅳ包含的血清型為4b,4a和4c[14],4b血清型菌株在家系Ⅰ、Ⅲ和Ⅳ中均有發現[19]。菌株進化家系研究通常會結合菌株的血清型(serotypes)、血清組(serogroups)、流行克隆(epidemic clones,ECs)、毒力類型(virulence types,VTs)、克隆復合體(clonal complexes,CCs)和序列類型(sequence types,STs)[20],以研究比較菌株在系統發育、遺傳多樣性、生態位和致病性方面的異同點。不同家系的菌株致病性和宿主特異性不同,對人類健康的威脅程度也不同,在一些流行病學研究中,需要對單增李斯特菌進化家系進行鑒別,為食品安全的評估、可能的感染暴發提供科技支撐。本文對單增李斯特菌進化家系的劃分依據、不同家系的特點、流行特征、檢測方法等進行了歸納總結,希望能為研究與菌株家系有關的李斯特菌病提供一定參考。
1、 單增李斯特菌進化家系劃分
單增李斯特菌最初的“家系”相關劃分源于多位點酶電泳(multilocus enzyme electrophoresis,MEE)顯示不同電泳簇(ET)結果和菌株血清型分布不一致[21],為進一步尋找分離株之間的潛在關系而引入“進化家系”的概念。“家系(Lineages)”名稱的正式使用是在1997年,研究人員利用核糖體分型和3種毒力基因hly、actA和inlA將133株單增李斯特菌劃分為家系Ⅰ和家系Ⅱ,且對核糖體片段和16S rRNA基因序列的分析中首次確定菌株另外一種獨特家系的存在即家系Ⅲ[22]。基于家系Ⅲ菌株所呈現的獨特性質和非典型性狀,Roberts等[23]采用EcoRⅠ核糖分型和hly基因的PCR-限制性酶切長度多態性(PCR-restriction length polymorphism,PCR-RFLP)對46株家系Ⅲ菌株進行分析,系統發育研究證明了家系Ⅲ存在3種亞系(ⅢA,ⅢB和ⅢC)[24]。家系Ⅳ的正式劃分是在2008年,Ward等[25]利用多位點基因分型(multilocus genotyping,MLGT)方法,建立系統發育樹說明家系Ⅳ菌株獨立于家系Ⅲ。至此,明確了單增李斯特菌可劃分為4種不同的進化家系[26](表1)。菌株家系的劃分既可以明確分離株之間的相關關系,為菌株的系統發育和致病性研究提供是思路,也可以作為菌株溯源和表達菌株生態位關系的依據。
表1 單增李斯特菌的家系劃分及其包含的血清型和致病性
注:表中首次分型時間和方法以文中有明顯家系關鍵詞為依據。PCR-RFLP:PCR-限制性酶切長度多態性;MLGT:多位點基因分型。
2 、單增李斯特菌進化家系的特點
2.1、 單增李斯特菌進化家系表型差異
單增李斯特菌分離株遺傳特性的不同導致了菌株表型差異。不同家系菌株在生長速率、毒力相關表型、生物膜形成能力、對NaCl的耐受能力[28]、產細菌素的能力[29]以及對食品的污染等方面均存在差異。這些差異可為食品加工條件的設定、菌株的生態位關系表征及初步判斷菌株毒力強弱提供了部分依據和基礎。
不同家系菌株表型差異首先表現在菌株生長速率和對食品的污染方面,在菌株生長速率研究中,不同家系菌株在不同的培養溫度和培養基中的生長速率有所不同,其中37℃、含有6% NaCI的BHI培養基中家系Ⅰ和Ⅲ菌株的生長速率明顯高于家系Ⅱ[20,30]。特定培養環境造成菌株生長速率改變的同時一定程度上影響著菌株對食品的污染和對動物、人類的侵襲,不同處理方法下菌株對食品的污染能力不同,在高壓和溫熱下,家系Ⅰ菌株對食品的污染能力高于家系Ⅱ[31]。此外,在多種脅迫條件下家系Ⅱ菌株的生長和存活能力顯著高于家系Ⅰ[32,33]。
菌株對細胞的污染和侵襲程度與細菌在細胞表面的生物膜形成相關[34],研究顯示家系Ⅱ菌株比家系Ⅰ更易生成生物膜[35],同時家系Ⅱ菌株生物膜胞外基質中含有更多的胞外DNA[36,37]。胞外基質對細菌的黏附和定殖至關重要,發生定殖而溶解目標細胞的李斯特菌溶血素(LLS)多產生于家系Ⅰ而非家系Ⅱ菌株[29]。借助原子力顯微鏡研究細菌黏附,家系Ⅱ菌株與家系Ⅰ相比,其總體黏附力較高但特異性力(氫鍵)和非特異性力(范德華力和靜電作用力)較低,并且表現出了更高的楊氏模量和更長更硬的生物聚合物[38,39]。
細菌成斑實驗和溶脂表型可為菌株毒力強弱的測定提供初步依據,不同家系菌株形成的噬菌斑、空斑大小和成斑率以及溶脂性現象等毒力相關表型均表現出不同。在噬菌斑成斑實驗中,家系Ⅱ菌株的成斑率低于家系Ⅰ和Ⅲ的同時顯示出更小的噬菌斑[22]。類似的,家系Ⅰ和家系Ⅱ菌株相較于家系Ⅲ能形成更大的空斑[40]。相比于家系Ⅰ和家系Ⅱ的分離株,家系Ⅲ菌株在卵黃瓊脂平板上表現出更強的溶脂活性[40]。
2.2、 單增李斯特菌進化家系基因組差異
菌株在基因組水平上的差異源于基因特異性研究,不同家系菌株的基因組差異主要體現在基因含量、基因突異、基因重組和基因表達等方面。
菌株的基因組差異首先表現在基因含量上,利用多種基因組分析工具發現家系Ⅰ和家系Ⅱ菌株基因含量存在差異,這種差異除前噬菌體數目,編碼蛋白質的偽基因個數和菌株特異性基因外[41],還包括毒力基因,應激反應基因和代謝相關的基因。使用RPKM(reads per kilobase per million mapped)發現家系Ⅱ菌株比家系Ⅰ缺少編碼膜相關蛋白的167個基因[42]。Chen等[43]發現參與編碼菌株精氨酸脫亞氨酶和胍丁胺脫亞氨酶系的部分基因簇在家系Ⅰ和家系Ⅱ及大部分家系Ⅳ菌株中存在,但在家系Ⅲ和少部分家系Ⅳ菌株則缺乏。對于4種不同家系菌株的基因組差異,菌株毒素-抗毒素系統的14個等位基因同樣顯示明顯的差別[44]。與毒力基因相關的家系差異還包括菌株致病島(LIPI-3和 LIPI-4)組成基因[45],其中LIPI-3主要存在于家系Ⅰ分離株[46]。除基因含量的差異外,單核苷酸多態性(SNP)、轉座因子和基因缺失[29,47] 等基因突變是基因組水平上最常見的差異。Zhang等[48] 通過Python編程語言對菌株基因組數據挖掘后,找到多個可以區分家系I、Ⅱ、Ⅲ菌株的特定SNP的候選基因。在基因突變中較為罕見的毒力決定簇PrfA的移碼及錯義突變使得家系Ⅰ和家系Ⅱ菌株的毒力降低[49]。此外,水平基因轉移現象也能反映不同家系菌株在基因水平上的差異,在基因轉移上,家系Ⅲ菌株對于家系Ⅰ和家系Ⅱ是最佳的基因供體[50]。
不同家系菌株的進化形成與同源重組(homologous recombination)和正向選擇(positive selection)密切相關[51]。菌株系統發育中的基因重組表明,家系Ⅱ菌株比家系Ⅰ更容易發生重組[50],這導致了家系Ⅱ菌株的高遺傳變異性,也使得家系Ⅱ菌株更容易適應變化的生態位,進而可能影響食品及其相關生態位中家系Ⅱ和家系Ⅰ菌株的數量[52]。
2.3 、單增李斯特菌進化家系轉錄組差異
轉錄組研究是對基因結構和基因功能的拓展研究,不同家系菌株的轉錄組研究顯示了菌株在噬菌體基因[53]、毒力相關基因、應激調控因子[54]和細胞壁合成[41]等方面的差異。
在證明菌株基因組多樣性的同時,不同家系菌株在毒力基因分布上存在差異,研究顯示高毒力基因和低毒力基因分別分布在家系Ⅰ和家系Ⅱ菌株中[7]。在氧化劑、酸和熱響應等應激反應方面的轉錄組研究顯示,家系Ⅰ比家系Ⅱ的ST菌株顯示出對氧化劑更高的應激抵抗力,同時家系Ⅱ菌株在0.6% H2O2作用下表現更為敏感[33]。Sigma B(σB)作為菌株最主要的調節因子,其對家系Ⅰ,Ⅱ和ⅢB菌株在酸和氧化應激條件下的存活起重要作用,但是對家系ⅢA菌株效果不明顯[55]。此外,作為σB的替代調節因子,PrfA也影響著菌株在壓力和毒性下的差異轉錄,菌株對膽汁的應激抵抗研究發現,家系Ⅱ菌株發生差異轉錄的基因要少于家系Ⅰ[56]。
此外,Lee等[7]基于多位點序列分型(multilocus sequence typing,MLST)在轉錄組水平對家系Ⅰ和家系Ⅱ菌株進行比較,發現家系Ⅰ菌株顯示出更高的轉錄組水平。
2.4 、單增李斯特菌進化家系蛋白質組差異
在基因組和轉錄組水平上的研究不足以完全體現不同家系菌株的特點,基因調控和表達的變化同樣會造成不同家系菌株致病性和侵襲能力的差異[57]。不同家系菌株可在蛋白質定量表達[58]、蛋白質表達程度和蛋白質種類(核糖體蛋白種類[59]、表面蛋白)等方面體現差異。
家系Ⅰ和家系Ⅱ菌株在蛋白組水平上的直接差異體現在蛋白質表達量上[58]。其次,使用二維凝膠電泳顯示家系Ⅱ菌株的蛋白表達程度沒有家系Ⅰ明顯[60]。建立蛋白質種類和家系之間的聯系不僅可以促進家系分型,也可以為菌株致病性研究提供幫助。Teruyo等[59]借助基質輔助激光解吸電離飛行時間質譜(MALDI-TOF MS)發現不同家系(家系Ⅰ、Ⅱ、Ⅲ)的3種核糖體蛋白存在差別。對于哺乳動物所需的表面蛋白lmo0320,在家系Ⅱ中得到的概率是家系Ⅰ的2倍左右[32]。與菌株毒力相關的表面蛋白在不同家系菌株中同樣存在差異[61]。這些蛋白質水平上的差異研究對于菌株致病性研究和生態位關系的確定有著積極促進作用。
2.5、 單增李斯特菌進化家系代謝組差異
通過對菌株細胞內源物質的動態研究發現,不同家系菌株在代謝組的差異主要分為對物質的吸收利用和分解[57]、代謝途徑差異[62]和物質的分泌等方面。
不同成分碳源物質的培養基會影響菌株的生長繁殖。含D-阿洛糖的富集肉湯可以改善菌株的分離并減少非目標細菌的生長,研究發現只有家系Ⅱ菌株可以利用D-阿洛糖作為生長的碳源,其余家系菌株均不能[63]。此外,家系Ⅱ菌株還可以代謝蔗糖[57]。研究菌株對物質的分解發現,ⅢB和ⅢC亞系分離株缺乏發酵鼠李糖的能力,但家系ⅢA對鼠李糖和乳酸則顯示陽性結果[23]。這也從側面說明不同家系菌株在碳源利用上存在一定的差異[57]。
由于代謝組位于基因組和轉錄組的下游,因此不同家系菌株在基因組和轉錄組的差異會導致代謝組的不同。采用轉錄組學表明家系Ⅱ和家系Ⅰ菌株在磷酸鹽代謝、脂質代謝和輔酶輔基代謝中存在不同的富集趨勢[7]。基于全基因組分析菌株遺傳關系時發現家系Ⅰ和家系Ⅱ菌株的部分基因座編碼的醛糖1-表異構酶代謝途徑存在差異[62],這表明不同家系菌株基因組和代謝之間保持高度保守性[57]。
2.6 、單增李斯特菌進化家系致病性
李斯特病的高死亡率促進了單增李斯特菌致病性研究,而菌株的致病性取決于各種毒力因子[64]。目前發現的毒力因子有李斯特致病島家族(LIPI-1,LIPI-2,LIPI-3和 LIPI-4),蛋白質(表面蛋白(Internalin A、Internalin B)和P60蛋白[65])和轉錄調節因子[49,66]等,其中最主要的是李斯特致病島1(LIPI-1)。各種毒力因子的致病機理有所差異,如轉錄激活因子PrfA負責調節和控制許多毒力基因的轉錄表達[42],inlAB操縱子編碼的兩個內部蛋白對于進入非吞噬細胞至關重要[66]。不同進化家系菌株的致病性差異還與毒力因子的分泌相關。作為最重要的轉錄調節因子,σB的存在影響著家系Ⅰ,Ⅱ和ⅢB菌株對人上皮Caco-2細胞的入侵[55]。不同家系菌株中的毒力基因也影響著菌株的致病性,編碼Internalin蛋白的基因inlG,inlK和inlF 通常出現在家系Ⅱ菌株中[66]。同樣,InlA蛋白(由inlA 基因編碼)的存在會影響菌株穿越人腸道屏障[67],而擁有全長inlA 基因和LIPI-3/4的菌株通常會導致嚴重的李斯特病[68]。Chen等[69]利用全基因組測序技術(whole-genome sequencing,WGS)對即食食品分離株的inlA基因的提前終止密碼子(premature stop codon,PMSC)測序,發現家系Ⅰ或帶有全長inlA的分離株通常比家系Ⅱ或帶有inlA PMSCs的菌株具有更大的毒力潛能。除毒力因子外,不同家系菌株的致病性可能和細胞壁的WTA相關[17]。
不同家系菌株致病性強弱相差較大,大多數人類李斯特菌病的暴發是由含4種外毒素的家系Ⅰ菌株引起[70],這可能和其高度克隆的特性相關[32]。菌株進化中毒力會發生變化,這與毒力基因突變和相關蛋白丟失有關,研究發現家系Ⅱ菌株的毒力喪失可能與毒力基因(prfA,inlA和inlB等)的突變有關[71],表面蛋白的缺失同樣會促使家系Ⅲ菌株毒力發生改變[72]。菌株致病性研究往往依賴于菌株分離,而菌株的分離獲得與國家地域,飲食風俗,衛生條件和采樣方法相關。Francisque等[73]對5大洲共300份分離株進行流行病學研究,發現很少有流行性菌株存在。在一些國家發現家系Ⅱ菌株引起的人類李斯特菌病要多于家系Ⅰ[74]。
3 、單增李斯特菌不同進化家系的分型方法
單增李斯特菌流行病學研究中,分離株的家系分型結果和菌株來源有著密切聯系,對分離獲得的菌株進行家系鑒別后,需要進一步研究分析不同來源分離株的關系以說明菌株的遺傳特性,而這種解釋往往依賴于合適的分型方法。將分型方法和生態位相結合可以為李斯特菌病防控和衛生服務建設提供參考。
表2 單增李斯特部分家系分型方法
注:aT,確定家系,U,未確定家系。表中數據以文章中有明顯的分型方法為關鍵詞進行搜索描述,同一分型方法選取有代表性的文章進行列表,文獻數據查詢來源于ISI-SCI(http://www.webofknowledge.com.cslg.naihes.cn/)。
菌株精確的家系分型能為菌株種內遺傳變異研究提供依據,尤其是菌株致病性方面[85]。最先用于家系分型的方法包括MEE,脈沖場凝膠電泳(pulsed-field gel electrophoresis,PFGE),基于限制性片段的DNA指紋分型技術(Rep PCR,AFLP和PFLP等)和核糖體分型等,其中PFGE使用范圍廣,區分能力強,被認為是分型的“金標準”,在分型中使用ApaⅠ和AscⅠ酶以提高分型能力。Valladares等[74]根據PFGE條帶將菌株分為家系Ⅰ和家系Ⅱ。然而PFGE結果在不同實驗室之間的解釋和比較上難以一致且不易準確表明疾病暴發后菌株與環境之間的關聯性[77]。為此,MLST[86,87],基于SNP的高分辨分解(high resolution melting,HRM)技術[88],多位點可變數目串聯重復序列(multilocus variable number of tandem repeat analysis,MLVA)分型[89],多位點毒力基因序列分型(multi-virulence-locus sequence typing,MVLST)[90]及其他基于PCR的相關分型方法相繼應用。Miya等[77]基于串聯重復區的核苷酸序列,建立比MLST有更強區分能力的(multilocus tandem repeats sequence analysis,MLTSA)分型方法,成功將菌株分為家系Ⅰ和家系Ⅱ。馬彥寧等[82]利用LIPI-1的等位基因特異性寡核苷酸,將菌株分為家系Ⅰ、家系Ⅱ和家系Ⅲ。王毅等[81]建立多重PCR方法用于4種家系和2個亞系菌株的快速區分鑒定。除此之外,利用不同家系菌株的特定SNP候選基因同樣實現了不同家系的分型[48]。這些分型方法的建立和應用一定程度上加快了進化家系的遺傳發育和致病性研究。但是MLST和MLVA方法缺乏對于大量疾病暴發株的區分能力[80,91]且MLVA的區分能力略弱于PFGE[80],ASO-PCR對單管反應確定菌株家系要求較高。為更好地進行家系菌株分型,WGS越來越多地作為開發基因分型方法的基礎[92],其數據還可以用于毒力基因的檢測和地理歸屬確定。WGS廣泛的使用在跨區域、多來源的單增李斯特菌分離株家系分型、遺傳多樣性及致病性研究[93,94]。Chen等[69]通過WGS序列的核基因組MLST(core genome MLST,cgMLST)分型構建系統發育樹對即食食品分株進行家系分型研究,結合WGS分析確認了家系Ⅰ,家系Ⅱ和家系Ⅲ的相關分離株。比較基因組學方法不僅在致病株遺傳研究和家系分型中應用普遍[95],而且在探究對入侵宿主相關基因[96]和揭示不同家系菌株侵襲力、毒力[57]變化中同樣使用廣泛。除上述家系分型方法外,質譜和菌株表面蛋白也被用于家系分型。Koudelka等[97]利用MALDI-TOF MS對李斯特菌病和食品分離株進行家系分型,基于自建庫的分型準確率為95.7%。Zhang等[98]將菌株的表面蛋白開發為單克隆抗體的抗原靶標,特定單克隆抗體對家系Ⅱ和Ⅰ菌株的特異性識別率為91.3%(表2)。
基于多種家系分型結果,單增李斯特菌4種家系之間存在重疊的生態位關系。相較而言,家系Ⅰ菌株在人類和動物李斯特菌病中較多分離獲得[99],家系Ⅱ菌株主要分離自食品及食品加工環境[100]。家系Ⅲ和家系Ⅳ菌株則較少分離獲得[101],這可能和菌株的生物膜形成能力有關,使得加工過程產生的壓力造成菌株的減少,從而較少的分離獲得。總之,家系Ⅱ和家系Ⅰ菌株較常分離獲得,因而常見于菌株流行病學和遺傳發育研究。為更好表明家系分型的研究意義,有必要綜合考慮菌株分離來源(國家或地區,分離位點,分離基質和分離季節等)。
4 結語
綜上所述,單增李斯特菌的進化家系在表型、基因組及致病性等方面均存在差異,在食品安全領域,對分離菌株進行家系分析,不僅可以對食品生產加工過程中菌株的耐受能力和膜形成能力做出預先判斷,為食品加工過程中菌株的消殺滅提供參考,同時,也可以了解不同家系菌株在食品中的分布規律,為食品中單增李斯特菌的風險識別提供基礎數據。
參考文獻
[1] HERNANDEZ-MILLIN A, PAYERAS-CIFRE A. What is new in listeriosis? [J]. BioMed Research Internationa, 2014, 2014(358051): 7. DOI:10.1155/2014/358051.
[2] WOO HYUK‐JE, KANG JI‐HOON, LEE CHAE‐HUN, et al. Application of Cudrania tricuspidata leaf extract as a washing agent to inactivate Listeria monocytogenes on fresh‐cut romaine lettuce and kale [J]. International Journal of Food Science & Technology, 2019, 55(1): 276-282. DOI:10.1111/ijfs.14305.
[3] FLILIPELLO V, MUGHINI-GRAS L, GALLINA S, et al. Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy [J]. Food Microbiology, 2020, 89(103433. DOI:10.1016/j.fm.2020.103433.
[4] STESSL B, SZAKMARY-BRANDLE K, VORBERG U, et al. Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant [J]. International Journal of Food Microbiology, 2020, 314(108360. DOI:10.1016/j.ijfoodmicro.2019.108360.
[5] 李燕杰, 蘇新國, 姚玉靜, 等. 不同類型表面材料對單增李斯特菌生物被膜形成的影響 [J]. 鄭州輕工業學院學報(自然科學版), 2015, 30(Z2): 33-37. DOI:10.3969/j.issn.2095-476X.2015.5/6.007.
[6] PAPIC B, PATE M, FELIX B, et al. Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment [J]. BMC Microbiol, 2019, 19(1): 299. DOI:10.1186/s12866-019-1676-3.
[7] LEE B. H, GARMYN D, GAL L, et al. Exploring Listeria monocytogenes Transcriptomes in Correlation with Divergence of Lineages and Virulence as Measured in Galleria mellonella [J]. Applied and Environmental Microbiology, 2019, 85(21): DOI:10.1128/AEM.01370-19.
[8] MORANDI S, SILVETTI T, VEZZINI V, et al. How we can improve the antimicrobial performances of lactic acid bacteria? A new strategy to control Listeria monocytogenes in Gorgonzola cheese [J]. Food Microbiology, 2020, 90(103488. DOI:10.1016/j.fm.2020.103488.
[9] KARTHIKEYAN R, GAYATHRI P, GUNASEKARAN P, et al. Comprehensive proteomic analysis and pathogenic role of membrane vesicles of Listeria monocytogenes serotype 4b reveals proteins associated with virulence and their possible interaction with host [J]. International Journal of Medical Microbiology, 2019, 309(3-4): 199-212. DOI:10.1016/j.ijmm.2019.03.008.
[10] WANG Wenkai, ZHOU Xiujuan, SUO Yujuan, et al. Prevalence, serotype diversity, biofilm-forming ability and eradication of Listeria monocytogenes isolated from diverse foods in Shanghai, China [J]. Food Control, 2017, 73(1068-1073. DOI:10.1016/j.foodcont.2016.10.025.
[11] VASILEV V, JAPHETH R, BREUER R, et al. A survey of Listeria monocytogenes strains, isolated from ready-to-eat foods in Israel over a period of 10 years, 1998–2007 [J]. Food Control, 2010, 21(8): 1179-1181. DOI:10.1016/j.foodcont.2010.01.015.
[12] DOUMITH M, BUCHRIESER C, GLASER P, al. et. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR [J]. Journal of Clinical Microbiology, 2004, 42(8): 3819-3822. DOI:10.1128/JCM.42.8.3819-3822.2004.
[13] 涂春田, 陳兆國, 汪洋, 等. 上海市雞源單增李斯特菌株分離鑒定、血清分型、耐藥性和生物被膜形成分析 [J]. 中國動物傳染病學報, 2020, 1-11. http://h-s.kns.cnki.net.cslg.naihes.cn/kcms/detail/31.2031.S.20200211.1551.038.html.
[14] 張正東, 張玲, 王紅, 等. 自貢市2014年農貿市場食品中單增李斯特菌污染狀況調查 [J]. 實用預防醫學, 2019, 26(3): 264-267. DOI:10.3969/j.issn.1006-3110.2019.03.003.
[15] 張晶, 白志軍, 和鵬, 等. 廣州市58株單增李斯特菌菌株特征分析 [J]. 現代預防醫學, 2019, 46(5): 879-883. DOI:CNKI:SUN:XDYF.0.2019-05-026.
[16] GIANFRANCESCHI M. V, D'OTTAVIO M. C, GATTUSO A, al. et. Distribution of serotypes and pulsotypes of Listeria monocytogenes from human, food and environmental isolates (Italy 2002-2005) [J]. Food Microbiology, 2009, 26(5): 520-526. DOI:10.1016/j.fm.2009.03.003.
[17] SPERAS P. A, HAVELL E. A, HAMRICK T. S, et al. Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread [J]. Molecular Microbiology, 2016, 101(5): 714-730. DOI:10.1111/mmi.13353.
[18] HAASE J. K, DIDELOT X, LECUIT M, et al. The ubiquitous nature of Listeria monocytogenes clones: a large-scale Multilocus Sequence Typing study [J]. Environ Microbiol, 2014, 16(2): 405-416. DOI:10.1111/1462-2920.12342.
[19] WARD T. J., GORSKI L., BORUCKI M. K., et al. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes [J]. J Bacteriol, 2004, 186(15): 4994-5002. DOI:10.1128/JB.186.15.4994-5002.2004.
[20] TANG S, WIEDAMNN M, GARDNER A. L, al. et. Clonal Clustering Using 10-Gene Multilocus Sequence Typing Reveals an Association Between Genotype and Listeria monocytogenes Maximum Growth Rate in Defined Medium [J]. Foodborne Pathogens & Disease, 2015, 12(12): 972-982. DOI:10.1089/fpd.2015.2019.
[21] C PIGFFARETI J, H KRESSEBUCH, M AESCHBACHER. Genetic Characterization of Clones of the Bacterium Listeria monocytogenes Causing Epidemic Disease [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10): 3818-3822. DOI:10.2307/33967.
[22] M WIEDMANN, L BRUCE J, C KEATING, et al. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. [J]. Infection and Immunity, 1997, 65(7): 2707. DOI:10.1007/BF01713160.
[23] ROBERTS A, NIGHTINGALE K, JEFFERS G, et al. Genetic and phenotypic characterization of Listeria monocytogenes lineage III [J]. Microbiology, 2006, 152(Pt 3): 685-693. DOI:10.1099/mic.0.28503-0.
[24] LIU D, L LAWREENDCE M., WIEDMANN M, et al. Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential [J]. Journal of Clinical Microbiology, 2006, 44(11): 4229-4233. DOI:10.1128/JCM.01032-06.
[25] WARD TODED J, DUCEY THOMAS F, USGAARD THOMAS, et al. Multilocus Genotyping Assays for Single Nucleotide Polymorphism-Based Subtyping of Listeria monocytogenes Isolates [J]. Applied and Environmental Microbiology, 2008, 74(24): 7629-7642. DOI:10.1128/aem.01127-08.
[26] H ORSI R, D BAKKER H C, M WIEDAMNN. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics [J]. International Journal of Medical Microbiology, 2011, 301(2): 79-96. DOI:10.1016/j.ijmm.2010.05.002.
[27] H.C DEN BAKKER, BOWEN B. M, RODRIGUEZ-RIVERA L. D, al. et. FSL J1-208, a virulent uncommon phylogenetic lineage IV Listeria monocytogenes strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes [J]. Applied & Environmental Microbiology, 2012, 78(6): 1876-1889. DOI:10.1128/AEM.06969-11.
[28] AALTO-ARANEDA M, PONTINEN A, PESONEN M, et al. Strain Variability of Listeria monocytogenes under NaCl Stress Elucidated by a High-Throughput Microbial Growth Data Assembly and Analysis Protocol [J]. Applied and Environmental Microbiology, 2020, 86(6): DOI:10.1128/AEM.02378-19.
[29] MOHAMMADZADEH R, AZADEGEN A, KALANI B. S. Listeriolysin S may inhibit the anti-listerial properties of Lactobacillus plantarum [J]. Microbial Pathogenesis, 2019, 137(103744. DOI:10.1016/j.micpath.2019.103744.
[30] Bergholz Teresa M den Bakker Henk C, Fortes Esther D,Boor Kathryn J,Wiedmann Martin. Salt Stress Phenotypes in Listeria monocytogenes Vary by Genetic Lineage and Temperature [J]. FOODBORNE PATHOGENS AND DISEASE, 2010, 7(12): DOI:10.1089/fpd.2010.0624.
[31] STOLLEWERK KAKHARINA, CRUZ CRISTIONA D., FLETCHER GRAHAM, et al. The effect of mild preservation treatments on the invasiveness of different Listeria monocytogenes strains on Greenshell? mussels [J]. Food Control, 2017, 71(322-328. DOI:10.1016/j.foodcont.2016.07.012.
[32] PIRONE-DAVIES C., CHEN Y., PIGHTLING A., et al. Genes significantly associated with lineage II food isolates of Listeria monocytogenes [J]. BMC Genomics, 2018, 19(1): 708. DOI:10.1186/s12864-018-5074-2.
[33] MANSOB B, MELERO B, STESSL B, et al. The Response to Oxidative Stress in Listeria monocytogenes Is Temperature Dependent [J]. Microorganisms, 2020, 8(4): DOI:10.3390/microorganisms8040521.
[34] COMBROUSE T, SADOVSKAYA I, FAILLE C, et al. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions [J]. J Appl Microbiol, 2013, 114(4): 1120-1131. DOI:10.1111/jam.12127.
[35] LEE B. H, COLE S, BADEL-BERCHOUX S, et al. Biofilm Formation of Listeria monocytogenes Strains Under Food Processing Environments and Pan-Genome-Wide Association Study [J]. Frontiers in Microbiology, 2019, 10(2698. DOI:10.3389/fmicb.2019.02698.
[36] ?uláková Martina, Pazlarová Jarmila, Meyer Rikke Louise, et al. Distribution of extracellular DNA in Listeria monocytogenes biofilm [J]. Czech Journal of Food Sciences, 2019, 37(No. 6): 409-416. DOI:10.17221/9/2019-cjfs.
[37] 王園, 孫琳珺, 程穎, 等. 食品加工環境脅迫因素對單增李斯特菌生物膜形成的影響研究進展 [J]. 食品科學, 2020, 1-13. DOI:10.7506/spkx1002-6630-20200702-034.
[38] 王蕊蓋闊, 劉夢齊, 蔣麗, 等. 原子力顯微鏡在細菌黏附力學研究中的應用 [J]. 國際口腔醫學雜志, 2019, 46(6): 687- 692. DOI:10.7518/gjkq.2019080.
[39] ESKHAN A. O, ABU-LAIL N. I. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes lineages' I and II environmental and epidemic strains [J]. J Colloid Interface Sci, 2013, 394(554-563. DOI:10.1016/j.jcis.2012.11.038.
[40] 江玲麗, 陳健舜, 李愛云, 等. 單核細胞增多性李斯特菌弱毒株的生物學特性鑒定 [J]. 畜牧獸醫學報, 2014, 45(2): 274-280. DOI:10.11843/j.issn.0366-6964.2014.02.016.
[41] G TORSTEN HAIN R, BILLIONGLASER ANDRé. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes [J]. BMC Genomics, 2012, 13(1): DOI:10.1186/1471-2164-13-144.
[42] AGUILAR-BULTET L., NICHOLSON P., RYCHENER L., et al. Genetic Separation of Listeria monocytogenes Causing Central Nervous System Infections in Animals [J]. Front Cell Infect Microbiol, 2018, 8(20): DOI:10.3389/fcimb.2018.00020.
[43] CHEN Jianshun, CHEN Fan, CHENG Changyong, et al. Prevalence of the lmo0036-0043 gene cluster encoding arginine deiminase and agmatine deiminase systems in Listeria monocytogenes [J]. New Microbiologica, 2013, 36(2): 187. DOI:10.1016/j.procbio.2013.02.007.
[44] AGUERO J. A, AKARSU H, AGUILAR-BULTET L, et al. Large-Scale Comparison of Toxin and Antitoxins in Listeria monocytogenes [J]. Toxins (Basel), 2020, 12(1): DOI:10.3390/toxins12010029.
[45] ZHANG Yunyi, DONG Shilei, CHEN Honghu, et al. Prevalence, Genotypic Characteristics and Antibiotic Resistance of Listeria monocytogenes From Retail Foods in Bulk in Zhejiang Province, China [J]. Frontiers in Microbiology, 2019, 10(1710. DOI:10.3389/fmicb.2019.01710.
[46] 蘇樂斌, 李柏生, 譚海芳, 等. 基于全基因組測序的單核細胞增生李斯特菌食品分離株分子特征分析 [J]. 中國食品衛生雜志, 2019, 31(6): 522-527. DOI:CNKI:SUN:ZSPZ.0.2019-06-003.
[47] Hanxin ZHAO, Jianshun CHEN, Chun FANG. Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches [J]. Journal of Microbiology, 2011, 49(5): 759-767. DOI:10.1007/s12275-011-1006-4.
[48] XU Zhang, LI Ling, LI Zhiyong, et al. Mining Listeria monocytogenes single nucleotide polymorphism sites to identify the major serotypes using allele-specific multiplex PCR [J]. International Journal of Food Microbiology, 2020, 335(DOI:10.1016/j.ijfoodmicro.2020.108885.
[49] MAURY M. M, CHENAL-FRANCISQUE V, BRACQ-DIEYE H, et al. Spontaneous Loss of Virulence in Natural Populations of Listeria monocytogenes [J]. Infection & Immunity, 2017, 85(11): DOI:10.1128/IAI.00541-17.
[50] ZAMUDIO R, HAIGH R. D, RALPH J. D, et al. Lineage-specific evolution and gene flow in Listeria monocytogenes are independent of bacteriophages [J]. Environmental Microbiology, 2020, DOI:10.1111/1462-2920.15111.
[51] M LIAO JINGQIU W, JASNA KOVAC. Genetic Stability and Evolution of the sigB Allele, Used for Listeria Sensu Stricto Subtyping and Phylogenetic Inference [J]. Applied and Environmental Microbiology, 2017, 83(12): DOI:10.1128/AEM.00306-17.
[52] LOMONACO S, NUCERA D, FILIPELLO V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States [J]. Infect Genet Evol, 2015, 35(172-183. DOI:10.1016/j.meegid.2015.08.008.
[53] G TORSTEN HAIN R, BILLION ANDRé, KUENNE CARSTEN TOBIAS. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes [J]. BioMed Central, 2013, 13(1): DOI:10.1186/1471-2164-13-144.
[54] MRANHEIL M. A, BILLION A, et MOHAMED Wal. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages [J]. Nuclc Acids Research, 2011, 39(10): 4235-4248. DOI:10.1093/nar/gkr033.
[55] OLIVER H. F, ORSI R. H, WIEDMANN M. Listeria monocytogenes {sigma}B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains [J]. Applied & Environmental Microbiology, 2010, 76(13): 4216-4232. DOI:10.1128/AEM.00031-10.
[56] GUARIGLIA-OROPEZA V, ORSI R. H, GULDIMANN C, et al. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon [J]. Frontiers in Microbiology, 2018, 9(120): DOI:10.3389/fmicb.2018.00120.
[57] MUCHAAMBA F, ESHWAR A. K, STEVENS M. J. A, et al. Variable Carbon Source Utilization, Stress Resistance, and Virulence Profiles Among Listeria monocytogenes Strains Responsible for Listeriosis Outbreaks in Switzerland [J]. Frontiers in Microbiology, 2019, 10(957. DOI:10.3389/fmicb.2019.00957.
[58] DONALDSON J. R, NANDURI B, S.C URGESS. Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD [J]. Applied and Environmental Microbiology, 2009, 75(2): 366-373. DOI:10.1128/AEM.01847-08.
[59] OJIMA-KATO T, N YAMAMOTO, TAKAHASHI H, et al. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria [J]. PLoS One, 2016, 11(7): DOI:10.1371/journal.pone.0159730.
[60] DUMAS E, MEUNIER B, BERDAGUE J. L. Comparative analysis of extracellular and intracellular proteomes of Listeria monocytogenes strains reveals a correlation between protein expression and serovar [J]. Applied and Environmental Microbiology, 2008, 74(23): 7399-7409. DOI:10.1128/AEM.00594-08.
[61] QUEREDA J. J, RODRIGUEZ-GOMEZ I. M, MEZA-TORRES J, et al. Reassessing the role of internalin B in Listeria monocytogenes virulence using the epidemic strain F2365 [J]. Elsevier Sponsored Documents, 2019, 25(2): 252 e251-252 e254. DOI:10.1016/j.cmi.2018.08.022.
[62] FERWERDA B, R MAURY M., BROUWER M. C, et al. Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes [J]. Frontiers in Microbiology, 2019, 10(2702. DOI:10.3389/fmicb.2019.02702.
[63] Lu ZHANG, Yan WANG, Dongxin LIU, et al. Identification and Characterization of als Genes Involved in D-Allose Metabolism in Lineage II Strain of Listeria monocytogenes [J]. Frontiers in Microbiology, 2018, 9(621. DOI:10.3389/fmicb.2018.00621.
[64] CAO Xiaolong, WANG Yi, WANG Yan, et al. Isolation and characterization of Listeria monocytogenes from the black-headed gull feces in Kunming, China [J]. Journal of Infection and Public Health, 2018, 11(1): 59-63. DOI:10.1016/j.jiph.2017.03.003.
[65] 王旭. 基于比較基因組學和轉錄組學技術揭示單增李斯特菌毒力因子的研究 [D]. 上海市; 上海海洋大學, 2016,5-6.
[66] TOLEDO V, DENAKKER H. C, HORMAZABAL J. C, et al. Genomic Diversity of Listeria monocytogenes Isolated from Clinical and Non-Clinical Samples in Chile [J]. Genes, 2018, 9(8): DOI:10.3390/genes9080396.
[67] BIFULCO L., INGIANNI A., POMPEI R. An internalin a probe-based genosensor for Listeria monocytogenes detection and differentiation [J]. Biomed Res Int, 2013, 2013(640163. DOI:10.1155/2013/640163.
[68] MAURY M. M, TSAI Y. H, CHARLIER C, et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity [J]. Nature Genetics, 2016, 48(3): 308-313. DOI:10.1038/ng.3501.
[69] Yi CHEN, Yuhuan CHEN, REGIS POUILLOT, et al. Genetic diversity and profiles of genes associated with virulence and stress resistance among isolates from the 2010-2013 interagency Listeria monocytogenes market basket survey [J]. PLoS One, 2020, 15(4): e0231393. DOI:10.1371/journal.pone.0231393.
[70] QUEREDA J. J, ANDERSSON C, COSSART P, et al. Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken embryo infection model [J]. Veterinary Research, 2018, 49(1): 13-22. DOI:10.1186/s13567-017-0496-4.
[71] G SYLVIE M ROCHE O, KEROUANTON ANNA?LLE. Polyphasic characterization and genetic relatedness of low-virulence and virulent Listeria monocytogenes isolates [J]. BMC Microbiology, 2012, 12(1): DOI:10.1186/1471-2180-12-304.
[72] HAIN TORSTEN, GHAI ROHIT, BILLION ANDRE. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes [J]. BMC Genomics, 2012, 13(1): DOI:10.1186/1471-2164-13-144.
[73] CHENAL-FRANCISQUE, LOPEZ VIVIANE, CANTINELLI JODIE, et al. Worldwide Distribution of Major Clones ofListeria monocytogenes [J]. Emerging Infectious Diseases, 2011, 17(6): 1110-1112. DOI:10.3201/eid1706.101778.
[74] LOPEZ-VALLADARES G, DANIELSSON-THAM M. L, GOERING R. V, et al. Lineage II (Serovar 1/2a and 1/2c) Human Listeria monocytogenes Pulsed-Field Gel Electrophoresis Types Divided into PFGE Groups Using the Band Patterns Below 145.5 kb [J]. Foodborne Pathogens & Disease, 2017, 14(1): 8-16. DOI:10.1089/fpd.2016.2173.
[75] KWONG J. C, MERCOULIA K., TOMITA T., et al. Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes [J]. Journal of Clinical Microbiology, 2016, 54(2): 333-342. DOI:10.1128/JCM.02344-15.
[76] LI Zhen, PEREZ-OSORIO A, YU Wang, et al. Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State [J]. BMC Microbiol, 2017, 17(134): DOI:10.1186/s12866-017-1043-1.
[77] MIYA S, TAKAHASHI H, KAMIMURA C. Highly discriminatory typing method for Listeria monocytogenes using polymorphic tandem repeat regions [J]. Journal of Microbiological Methods, 2012, 90(3): 285-291. DOI:10.1016/j.mimet.2012.05.023.
[78] CRUZ C. D, PITMAN A. R, HARROW S. A, et al. Listeria monocytogenes associated with New Zealand seafood production and clinical cases: unique sequence types, truncated InlA, and attenuated invasiveness [J]. Appl Environ Microbiol, 2014, 80(4): 1489-1497. DOI:10.1128/AEM.03305-13.
[79] Ping WANG, Hairong YANG, Yue HU, et al. Characterization of Listeria monocytogenes isolates in import food products of China from 8 provinces between 2005 and 2007 [J]. J Food Sci, 2012, 77(4): M212-216. DOI:10.1111/j.1750-3841.2011.02596.x.
[80] CHENAL-FRANCISQUE V, DIANCOURT L, T CANTINELLII, et al. Optimized Multilocus variable-number tandem-repeat analysis assay and its complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for Listeria monocytogenes clone identification and surveillance [J]. J Clin Microbiol, 2013, 51(6): 1868-1880. DOI:10.1128/JCM.00606-13.
[81] 王毅, 王艷, 葉正興, 等. Differentiation of 4 Listeria monocytogene phylogenetic lineages and 2 sublineages by a novel multiplex PCR [J]. 中國人獸共患病學報, 2013, 29(12): 1151-1156. DOI:10.3969/cjz.j.issn.1002-2694.2013.12.005.
[82] 馬彥寧, 趙悅, 郭云昌, 等. 即食食品中單核細胞增生李斯特菌的血清學分型和毒力基因分析 [J]. 中國食品衛生雜志, 2017, 29(1): 14-18. DOI:10.13590/j.cjfh.2017.01.004.
[83] RIP DIANE, GOUWS, A PIETER. PCR-Restriction Fragment Length Polymorphism and Pulsed-Field Gel Electrophoresis Characterization of Listeria monocytogenes Isolates from Ready-to-Eat Foods, the Food Processing Environment, and Clinical Samples in South Africa [J]. Journal of Food Protection, 2020, 83(3): 518-533. DOI:10.4315/0362-028X.JFP-19-301.
[84] TELLI NIHAT, G?NER AHMET, SOYER D?NMEZ FERDA, et al. Detection of the contamination sources of Listeria monocytogenes in pickled white cheese production process line and genotyping with the pulsed-field gel electrophoresis method [J]. Turkish Journal of Veterinary and Animal Sciences, 2016, 40(630-636. DOI:10.3906/vet-1511-59.
[85] DOJIAD S, WEIGEL M, BARBUDDHE S, et al. Phylogenomic grouping of Listeria monocytogenes [J]. Can J Microbiol, 2015, 61(9): 637-646. DOI:10.1139/cjm-2015-0281.
[86] SMITH A, HEARN J, TAYLOR C, et al. Listeria monocytogenes isolates from ready to eat plant produce are diverse and have virulence potential [J]. International Journal of Food Microbiology, 2019, 299(23-32. DOI:10.1016/j.ijfoodmicro.2019.03.013.
[87] OXARAN V, LEE S. H. I, CHAUL L. T, et al. Listeria monocytogenes incidence changes and diversity in some Brazilian dairy industries and retail products [J]. Food Microbiology, 2017, 68(16-23. DOI:10.1016/j.fm.2017.06.012.
[88] TAMBURRO M, RIPABELLI G. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature [J]. Annali Di Igiene Medicina Preventiva E Di Comunita, 2017, 29(4): 293-316. DOI:10.7416/ai.2017.2153.
[89] MIYA S, KIMURA B, SATO M. Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains [J]. International Journal of Food Microbiology, 2008, 124(3): 239-249. DOI:10.1016/j.ijfoodmicro.2008.03.023.
[90] KIM S. W, HAENDIGES J, KELLER E. N, et al. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014) [J]. PLoS One, 2018, 13(5): e0197053. DOI:10.1371/journal.pone.0197053.
[91] RAGON M, WIRTH T, OLLANDT F, et al. A new perspective on Listeria monocytogenes evolution [J]. PLoS Pathog, 2008, 4(9): DOI:10.1371/journal.ppat.1000146.
[92] Yuelan YIN, Hao YAO, SWAPNIL DOIJAD, et al. A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates [J]. Nature Communications, 2019, 10(1): 4283. DOI:10.1038/s41467-019-12072-1.
[93] WHITMAN K. J, BONO J. L, CLAWSON M. L, et al. Genomic-based identification of environmental and clinical Listeria monocytogenes strains associated with an abortion outbreak in beef heifers [J]. BMC Veterinary Research, 2020, 16(1): 70. DOI:10.1186/s12917-020-2276-z.
[94] CAMARGO AADERSON C, MOURA ALEXANDRA, AVILLAN COHNNRTSY, et al. Whole‐genome sequencing reveals Listeria monocytogenes diversity and allows identification of long‐term persistent strains in Brazil [J]. Environmental Microbiology, 2019, 21(12): 4478-4487. DOI:10.1111/1462-2920.14726.
[95] LI Aiyun, XU Hao, LI Xiaoyu, et al. Genomic and Phenotypic Diversity of Listeria monocytogenes Causing Pregnancy-Associated Listeriosis from Zhejiang Province, China, 2016-2018 [J]. Infection and Drug Resistanc, 2020, 13(1179-1184. DOI:10.2147/IDR.S245305.
[96] P CHEN, DENBARKKER, J KORLACH, et al. Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes [J]. Applied & Environmental Microbiology, 2017, 83(3): DOI:10.1128/AEM.02091-16.
[97] KOUDELKA ?těpán, GELBí?ová Tereza, Procházková Markéta, et al. Lineage and serotype identification of Listeria monocytogenes by matrix-assisted laser desorption ionization-time of flight mass spectrometry [J]. Czech Journal of Food Sciences, 2019, 36(No. 6): 452-458. DOI:10.17221/87/2018-cjfs.
[98] XY ZHANGthy, W BROOKS BRIAN, Hongsheng HUANG, et al. Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools [J]. Applied & Environmental Microbiology, 2016, 82(17): 5465-5476. DOI:10.1128/AEM.00774-16.
[99] MUARY MYLENE M, TSAI YU-HUAN, CHARLIER CAROLINE, et al. Erratum: Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity [J]. Nature Genetics, 2017, 49(6): DOI:10.1038/ng0617-970d.
[100] TAMBURRO M, SAMMATCO M. L, RIPABELLI G. High resolution melting analysis for the characterization of lineage II Listeria monocytogenes serovars 1/2a and 1/2c based on single nucleotide polymorphisms identification within the Listeria Pathogenicity Island-1 and inlAB operon: a novel approach for epidemiological surveillance [J]. Journal of Applied Microbiology, 2018, DOI:10.1111/jam.14100.
[101] COBAN A, PENNONE V, SUDAGIDEN M, et al. Prevalence, virulence characterization, and genetic relatedness of Listeria monocytogenes isolated from chicken retail points and poultry slaughterhouses in Turkey [J]. Brazilian Journal of Microbiolog, 2019, 50(4): 1063-1073. DOI:10.1007/s42770-019-00133-y.